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Abstract: In this study an algorithm for mold-filling simulation with consideration of surface
tension has been developed based on a SOLA VOF scheme. As the governing equations, the
Navier-Stokes equations for incompressible and laminar flows were used. We proposed a way of
considering surface tension in mold-filling simulation. The proposed scheme for surface tension
was based on the continuum surface force (CSF) model; we could confirm the remarkable
effectiveness of the surface tension by experiment which concluded in very positive outcome.
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1. INTRODUCTION

Molecules of Fluid on, or near liquid surfaces
experience uneven molecular forces of
attraction. This causes the liquid surfaces to
possess an elastic skin (surface tension). Surface
tension is an inherent characteristic of material
interfaces because abrupt changes in molecular
forces occur when fluid properties change
discontinuously. Surface tension results in a
microscopic localized "surface force". These
forces exert themselves on fluid elements at
interfaces in both the normal and tangential
directions. Fluid interfacial motion induced by
surface tension plays a fundamental role in many
natural and industrial phenomena. For example,
capillarity, low-gravity fluid flow, hydrodynamic
stability, surfactant behaviour, cavitation, and
droplet dynamics in clouds and in fuel sprays
used in internal combustion engines [1-10] are
examples. A Detailed analysis of these processes
typically involves the use of numerical models to
aid in understanding the resulting non-linear
fluid flows. In 1988 Sethian and Osher [13]
proposed an LSM (Level Set Method). In this
method, a continuous function is introduced over
the whole computational domain. This function
has the properties of a distance function
indicating the shortest distance to the interface.
In 1992, Brackbill et al. proposed the CSF
method for modeling surface tension [11]. This
model interprets surface tension as a continuous,
three-dimensional effect across an interface,

rather than as a boundary value condition on the
interface. In 1994, Sussman, Osher and Smereka
extended the LSM method to a compressible
two-phase flow. In 1998, M. W. Williams et al.
proposed the CST (Continuum Surface Tension)
method [16]. This method generated better than
second-order accurate approximations to the
curvature of circular and spherical interfaces. In
2002, Marianne M. Francois proposed the GFM
(Ghost Fluid Method) and compared it with CSF
method [12]. In the same year, Berthelsen
showed that the LSM and CSF methods are
equivalent [15].

In this study, the CSF method was selected as the
numerical method because previous methods
have suffered from difficulties in modeling
topologically complex interfaces which have
surface tension.

2. PHYSICAL MODEL

The surface stress boundary condition at an
interface between two fluids (labeled 1 and 2) is
[17]:
(R =P +0K)n, = (7, —7,,)0, +a£ )

ox,
Where o is the fluid surface tension coefficient

(in units of force per unit length), P, is the
pressure in fluid o for o = 1; 2, T4 is the viscous

stress tensor, #;is the unit normal (into fluid 2)
at the interface, and K is the local surface
curvature R, + R;', where R1 and R2 are the
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principal radii of curvature of the surface. o can
only have a surface gradient; this would be,

perhaps, more clearly indicated by replacing oo
ox,

in (1) by (s, _ﬁ[;lk)ai. The gradient along a
Ox,

direction normal to the interface, VN, is:

VN = #(A.V) 2)
The surface tension, o, may vary along the
interface and its gradient tangent to the interface
is defined using the differential surface operator,
WA

VS=V-VN 3)
In this study, a one—Phase fluid flow model was
used, the fluid labeled 2 is empty and its density
is zero. Projecting (1) along the unit normal, 7,

and tangent, 7, results in scalar boundary
conditions for the fluid pressure in directions
both normal and tangent to the interface
respectively. While the normal stress boundary
condition can be satisfied at the interface
between the two fluids that at rest, the tangential
stress boundary condition requires the fluid to be
in motion. Surface tension manifests itself in the
normal direction as a force, ok, whitch drives
fluid surfaces towards a minimal energy state
characterized by the configuration of a minimum
surface area. Spatial variations in the surface

)’

because fluids flow from regions of lower to
higher surface tension. In our model, the normal
boundary condition for interfaces is modeled
where the surface tension coefficient is constant.
This condition is reduced to Laplace’s formula
for the surface pressure (PS) where the fluid
pressure jumps across an interface under surface
tension,

Py =P, - F =0k 4)
Surface pressure is therefore proportional to the
curvature (k) of the interface. Since surface
tension results in a net normal force directed
towards the centre of curvature of the interface,
the highest pressure is in the fluid medium on
the concave side of the interface.

tension coefficient go along the interface (

3. MATHEMATICAL MODEL (CSF METHOD)

Surface tension contributes to surface pressure
(4), which is the normal force per interfacial unit
area. We consider interfaces between fluids

because they have a constant surface tension
coefficient. This force has only normal
components; therefore, the surface force per
interfacial unit area can then be written as:

Sa(xS) ok (X )(Xy) (5)
Where K(x,) is the curvature considered

positive if the center of curvature is in fluid 2,
and A(X,) is the unit normal to A at Xg,

assumed to point into fluid 2 (Fig. 1). Consider
two fluids, fluid 1 and fluid 2, separated by an
interface at time t. Two fluids are distinguished
by some characteristic function, C(x%y),

C, InFluidl (6)
C(F)=1C, InFluid?2

<C>=(C,+C,)/2  Interface
that changes discontinuously at the interface.
The CSF Method originally considered replacing
the discontinuous characteristic function with a
smooth variation of fluid color C(x) from C1 to
C2 over a distance of 9(4) where h is a length

comparable to the resolution afforded by a
computational mesh with spacingax. This
replaces the boundary-value problem at the
interface with an approximate continuous model,
which mimics the problem specification in a
numerical calculation, where one specifies the
values of c¢ at the grid points and interpolates
between them. It is no longer appropriate to
apply a pressure jump induced by the surface
tension at an interface. Rather, surface tension
should be considered to act everywhere within
the transition region. Consider the volume force,
F, (%), that gives the correct surface tension

force per interfacial unit area, 1553(?(5), ash—0.

We identify this volume force for finite h as
VC(%) 7

Fy, (¥)=ok(3
()[]

cnmputptional

/4/////
A% A
e VN o)

,"\\\\%\ @ﬁ%%” interface
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A A
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Fig. 1. Mathematical method.
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Where [c] is the jump in color, [c] =C, - C,.
The reader is reffered to ref[11] for a detailed
discussion of CSF method.

4. NUMERICAL MODEL

4.1. Color Function

For tracing the free surfaces, VOF technique is
used. Also F (0<F<1) is used as the characteristic
function in the CSF method. When
computational cells are full, F=1 becomes zero
since there is no fluid in the cell. In other
research references [11] for example, density
functions have been the chosen characteristic
function. Consider at grid points,

CX)=FX) ®)
Therefore the volume force is still given by (6).
The transition region thickness is then of the
order of the grid spacing, and at the points

outside the transition region, 6(?{) has the
values 0, 1 in fluids 1, 2, respectively. The
interface between the fluids is given by the
SurfaceF(i)=%(1+0)=%:<F>~

One can multiply the integrand on the right side

of (6) by the function g(g):@ because of
<C>

the interface x=%, and g®X)=1. For

incompressible  flow, we useC(X)=F(X),

therefore g(%) is given by

F&® ©9)

<F>

And the volume force in (6), when multiplied

by g(x), becomes:

VF(X)F (%) (10)

[F]<F >

With this modification, fluid acceleration due to

surface tension is modeled as a volume force

density. Thus, if this force is substituted into the

Navier-Stoks formulation, we have:

@ _ okVF .F (11)

dt [F1<F>p

g(xX)=

Fy, (%) = 0k(%)

4.2. Evaluation of Curvature

The curvature of a surface A at Xg, k, is
calculated from

K =—(V.n) (12)
where, 71 is the unit normal to the surface. In the
CSF model, the interface is replaced by nested

surfaces of constant color, this normal is the
gradient of the mollified color function,

7i(X) = VF(X) (13)

The unit riormal is

() = V) (14)
‘VF()?)‘

Therefore, K VF (%) is needed to evaluate the

surface volume force, which is given by,
K.VF =—ii(V.h) (15)

Since VF' is not at zero in the transition region,
the surface volume force is also not at zero in the
transition region.

4.3. Discrete Equations

We have used the MAC method to discrete
equations. In this method the F Function resides
at cell's centers. The curvature K therefore will
also be cell-centered. We also chose to locate

ﬁSV at cell centers. The normal vectors at the

cell centers must be interpolated from nearby
cell faces in the MAC method

5. WALL ADHESION (BOUNDARY
CONDITION

The effects of wall adhesion on fluid interfaces
in contact with rigid boundaries in equilibrium
can be estimated easily within the framework of
the CSF model in terms of 0., the equilibrium
contact angle between the fluid and wall. The
angle 0. is called the static contact angle
because it is experimentally measured when the
fluid is at rest. In Fig. 2, if 0< 0,4 <90, the fluid
will wet the wall and if 90< 04 <180, it will also
separate itself from the wall. To calculate the
static contact angle we can write (Fig. 2)

O']2C0S19eq +0,, =03,

oo InEquilibrium (16)
= Cos0,, =—2—+
Oy,
\\\m /
£, >90 g, <90
O3y 2 s
i @?
Tz

Fig. 2. Contact angle.
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Where, o,,,0,, and o,, are surface tension

coefficients between materials labeled from 1
to 3. The equilibrium contact angle is not simply
a material property of the fluid. It also depends
on the walls smoothness and geometry.

The interfaces normal at points on the wall is
n=h,,Cos0, +hSind, (17)

Where 7, lies in the wall and is normal to the

contact line between the interface and the wall,
and 7, is the unit wall normal directed into the

wall. The unit normal 7, is computed by using

(13). Wall adhesion boundary conditions are
more complex when the contact lines are in
motion, i.e., when the fluid in contact with the
wall is moving relative to the wall. The
equilibrium of the wall adhesion boundary
condition in (15) may have to be generalized by
replacing 6.4 with a dynamic contact angle, 6,
that depends on local fluid and wall conditions.

6. STABILITY

The explicit treatment of surface tension is stable
when the time step resolves the propagation of
capillary waves [19],

A < (WJ (18)

2no

Where, < p >=(p, + p,)/2

This condition should be added to other time
steps in the limitation conditions in the algorithm
of fluid flow modeling.

7. NUMERICAL RESULTS

To illustrate the flexibility and accuracy of the
model, we present the results of several standard
static and dynamic problems with surface
tension.

7.1. Static Liquid Drop Test

In the absence of viscous, gravitational, or other
external forces, surface tension causes a static
liquid drop to become spherical. Laplace's
formula for a drop surrounded by a background
fluid at 100005 (Pa) pressure, (4), gives the
internal drop pressure defined by

P=ko=22 (19)
R

Where, R is the drop radius. Results in the
Cartesian geometry using a tree-dimensional

100012
100011 -

= 100010 - —&— Numerical

2 100009 - . Bt

£ 100008 -

@ 100007 -

£ 100006 -

100005 -
100004 ‘ ‘ ‘ T
0 10 20 30 40 50
Distance[mm]
Fig. 3. Comparison between numerical results and
exact Pressure of Static liquid drop.

50%50%50 computational grid (Ax=2mm) are
compared with (17). The fluid drop radius is
R = 10 and 15 (cm), density = 1000 (Kg/m®),
background density = 0 (Kg/m®), and surface
tension coefficient = 0.07275 (N/m). The
pressure jump is 100005+ Ko (N/m?). This value
is compared with the mean computed drop
pressure obtained with the CSF model. The sum
is done over the computational cells lying within
the drop that has fluid. The relative error
between the theoretical and computed drop
pressure is given by,

N
% ERR = w (20)
Ko
where, N is the number of cells within the drop.
Table 1 illustrates computational errors in two
value of drop radius to the mesh size ratio

Table 1. Computational Errors

Radius /mesh size %Error
10 0.219
15 0.1357

Fig. 3 illustrates variation of theoretical and
numerical drop pressure through the drop
diameter when the drop radius to the mesh size
ratio is 10 and simulation time is 0.2 s.

7.2. Square Drop Test

When a drop is initially square, it responds to
unbalanced surface tension forces. The mesh
size, computational grid and liquid properties are
the same as in the previous test. Gravity is
neglected and the Square length is 32 mm.
Results are shown at a sequence of times, t=0,
0.15,0.2,0.3,0.4,0.5,0.7,0.8, and 1.1 s in fig.4.
At t=1.1 s, the drop is nearly circular in cross
section (minimum energy state).
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Fig. 4. Variation of Square drop shape.

7.3. Mold filling test

In this test, we wused pure melt Mg
(density = 1580[kg/m’], surface tension
coefficient = 0.59 [N/m]). The computational
grid is 77x14x64 and the mesh size is 4 mm.
The contact angle equals 150°. As shown in Fig.
5, the effects of surface tension were small in the
mold filling, but modeling surface tension makes
for better results. The free surface is flatter when
surface tension is modeled (minimum energy
state) and fluid flow modeling results are better
as well.

8. CONCLUSIONS

Through a detailed study of the properties of
CSF method for modeling of surface tension at
fluid-gas interface, we have a deeper

understanding of the molten metal flow with
surface tension. The numerical method is used to
solve for the velocity and pressure and the
advection of free surface is described. We have
detailed the boundary condition used and
discussed numerical stability issue. Many types
of free surface problems can now be solved with
the aid of our program, as can be seen one of
them is casting. Our numerical results were
compared with experiments and have good
agreements.
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Fig. 5. Comparison between simulation and experiments in mold filling, a-simulation with surface tension
model, b- experimental, c- simulation without surface tension model.
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